
Sketch 2 Tilemap: Procedurally Generated Tilemaps from a Drawing

Cole Sohn
Stanford University
csohn@stanford.edu

Abstract

Sketch-2-Tilemap generates a 3D video game level
tilemap from an input sketch. This approach allows users
to quickly design and prototype tiled levels by automat-
ing the manual work required to place tiles in a game en-
gine. Sketch-2-Tilemap first generates an irregular quadri-
lateral grid from an input sketch where the bounds of the
grid follow the contours of the sketch. Next, we implement
an extended Wave Function Collapse (WFC) algorithm that
works on irregular grids to choose tile placements. Finally,
tiles are transformed to the appropriate grid spaces using
lattice deformation to generate an output game map. Faces
on an irregular grid with mismatching orientations produce
problems with WFC outputs. We show this through experi-
mentation and propose a breadth-first orientation method to
optimize face alignments for more varied output tilemaps.

1. Introduction
Building large video games environments can be costly

and time consuming. For many games, a large portion of
this effort goes into creating art assets, which include 2D
sprites or 3D models. In order to reduce costs, it is often
important to create game art that is reusable and modular.
Modular game assets can be fit together in new ways such
that a much larger level can be synthesized from a limited
number of different assets.

To maximize modularity, many games are built on a grid.
Modular game assets are called tiles when they can be fit
together on a grid. Grid-based games are most commonly
built on a regular square grid [21], but there are many devi-
ations from this such as triangular, hexagonal, and irregular
grid-based games. [11] [4] [17]

A level designer of a grid-based game may begin design-
ing a map with a top-down sketch of the overall level layout.
Once they are satisfied by their design, they build the level
using a game engine which allows for the manual place-
ment of modular tiles. This process can be time-consuming
because it requires manual tile placement by the designer.
This manual effort can slow down the production of a level

Figure 1. Sketch-2-Tilemap Input and Output

and inhibit creativity during the prototyping process.
In this paper, we propose Sketch-2-Tilemap, a workflow

that utilizes an extended version of the Wave Function Col-
lapse algorithm[3] which gives the user control over gener-
ated levels. The user specifies a drawing representing the
shape of the level, and a pattern which drives the structure
of the level. Sketch-2-Tilemap automatically generate lev-
els following the constraints specified in the input pattern on
an irregular grid generated from the input sketch. Sketch-2-
Tilemap automates the process of manual tilemap creation
and allows the user to rapidly prototype and modify new
level designs.

2. Related Work:
2.1. Tilemaps

Generalized tilemaps allow developers to generate un-
limited unique gameplay spaces with a limited number of
art assets while manually created art assets must align with
specific placements and uses. Tilemaps also allow devel-
opers the freedom to swap out and make updates to tiles as
needed. This can speed up the level design process by al-
lowing designers and artists to work in tandem, and allow
for large artistic changes later in development.

There are existing methods to reduce the time it takes to
place tiles, but they are limited in the time they save or the
ability for an artist to control the output. A common method
of procedural tile selection is Adaptive Tilesets [13], which
allow for automation of the process of selecting tiles, but
they require unique setup for different instances and provide
only a minor shortcut to the overall goal of level generation.

Tilemaps are used by many Procedural Content Genera-

1

tion (PCG) algorithms to automatically generate gameplay
spaces through automated tile placement. Fully-procedural
methods to generate tilemaps include approaches using Cel-
lular Automate [6] and Marching Cubes [2]. These suffer
from not giving the user enough control over the structure
of the output.

2.2. Procedural Content Generation

Procedural Content Generation (PCG) is the automated
generation of game content. PCG is a broad term that
is applied to various algorithms that generate game con-
tent. These algorithms tend to fall into categories such as
grammars, search, constraints, and solvers [9]. Many tile-
based level generators such as Marching Cubes and WFC
are constraint-based algorithms, which place tiles based on
sets of rules.

Mixed-Initiative Design is a term used by Summerville
et al. [18] to represent PCG algorithms that generate content
with a mix of automation and user control. WFC would be
considered Mixed-Initiative Design because it takes a user-
generated pattern as input. Outputs generated with Mixed-
Initiative Design algorithms benefit from the artistic and
structural knowledge of a human designer as well as the
computation power and unexpected results of a procedural
algorithm.

2.3. Wave Function Collapse

Wave Function Collapse (WFC) is a constraint-based al-
gorithm initially proposed in 2016 by Maxim Gumin [3].
Initially intended for texture synthesis, WFC has since been
utilized as a PCG algorithm used to place 2D and 3D tiles
to generate game levels.

WFC can syntehsize a large level from a small exam-
ple pattern provided by a user. The output level matches
the constraints and structure followed by the input pattern.
While allowing the user to build large levels procedurally,
the base implementation of the WFC algorithm proposed
by Maxim Gumin [3] requires that the tiles be placed on a
standard rectangular grid.

In its base form, WFC starts with an n×n input array of
integers A. Each integer in the array represents the index of
a color or tile used in generating the final output. Input array
A represents some pattern or structure that the user would
like to have control the final output. The algorithm outputs
B, an m × m array which represents a texture or tilemap
synthesized following the patterns and structure found in A.
m can be greater than n, allowing a larger texture or tilemap
to be synthesized from a small input. For examples of Gu-
min’s initial WFC implementation, see Repository [3].

WFC first initializes B to 0. Each element of the ar-
ray has an assigned array T of size equal to the number of
tiles or colors available in the input. Elements of T are bi-
nary values representing if that tile can be placed in those

indices of B. The algorithm iteratively selects tiles for ele-
ments of B, setting all but one elements of Tb to 0. This step
is called a collapse. At each iteration, the algorithm propa-
gates changes due to the collapse of the selected tile based
on the constraints found in A. The algorithm repeats this
process until all elements of B have a single 1 value in Tb,
or until some Tb has all elements equal to 0, at which point
the algorithm has reached a contradiction must restart.

This algorithm has been extended for various projects
which incorporate three-dimensionality and various irreg-
ular grids. Marian Kleineberg used WFC extended to 3D
to create an infinite city generator [7], Ryan James Smith’s
implemented a 3D extension of WFC in Houdini [15], and
Oskar Stalberg has published many examples of WFC used
to generate spaces in his games including procedurally gen-
erated islands in the game Bad North [16] and procedurally
generated towns with user input in the digital toy Townsca-
per [17].

Tobias Nordvig Møller addressed the shortcomings of
WFC in his 2019 master thesis: Expanding Wave Func-
tion Collapse with Growing Grids for Procedural Content
Generation [10]. Traditionally, WFC is run on a regular
grid of a rectangular shape. This implementation extends
WFC by warping a simple grid to an arbitrary shape using a
growing grid algorithm. This implementation deforms tiles
placed by WFC using blendshapes. Møller’s extension of
the WFC algorithm inspired the implementation of this pa-
per. Sketch-2-Tileset notably diverges from Møller’s imple-
mentation by being generalizable to irregular grids of hand-
drawn shapes. As a result, Sketch-2-Tileset follows drawn
topology, matches the contours of hand-drawn shapes, and
allows for holes in the input shape. A comparison of these
approaches can be seen in Fig 14.

3. Methods:
Sketch-2-Tilemap converts an input sketch to a tiled level

in three stages. First, an irregular quadrilateral grid is gener-
ated from an input sketch. Second, an extended wave func-
tion collapse algorithm assigns tile indices to quads based
on an input constraint array. Third, square or cube tiles are
deformed to match the position and shape of their assigned
space on the grid. We will investigate these approaches in
detail.

3.1. Image to Irregular Grid

Sketch-2-Tilemap takes as an input a binary image rep-
resenting the shape of a level. First, contour detection is
performed using the algorithm proposed by Suzuki et. all
[19], implemented in OpenCV’s findContours() [1]
method. This returns an array of connected vertices in ori-
entations such that shapes are to the right of the contour.
Once contours are found, faces are formed with the closed
contours as the edges. Contours with a counter-clockwise

2

Figure 2. Input shape bitmap to 2D irregular grids

winding will result in faces with a normal vector [0, 1, 0],
and contours with a clockwise winding will result in faces
with the normal vector [0,−1, 0]. A boolean union oper-
ation is applied to the faces. Due to opposite windings,
this will result in a face with appropriate holes, as shown
in Fig. 2.

Mesh quadrangulation is performed on the output poly-
gon. Sketch-2-Tilemap uses the Interactive Field-Alligned
Operator implementation of mesh quadrangulation pro-
posed by Jakob et Al. [5].

This method has the benefits of topographically aligned
faces near borders, and a quadrilateral only results. This
approach tries to optimize vertex positions and edge orien-
tations based on the boarder of the input polygons. This is
beneficial for the resulting tilemap. Consider an input draw-
ing with narrow shapes representing corridors, as shown
in Fig. 2. It is desirable for quadrilaterals edges to follow
the shape of the path so tiles can be aligned and produce
traversible spaces.

This method is also optimized for runtime, which is es-
sential for producing a realtime tilemap drawing applica-
tion, and supports user sketched flowlines which can give
more control to the user for the generation of the grid.

One point of difficulty for any quadrangulation algorithm
is handling singularities. These are points where it is im-
possible to approximate a shape with a regular lattice. The
Interactive Field-Alligned Operator method handles singu-
larities by drawing T-junctions to ensure the output is com-
prised fully of quadrilaterals. A number of T-Junctions can
be observed in Fig. 2 where the normal lattice breaks down.

Singularities pose a challenge to wave function collapse,
which relies on constraints from a regular grid. One solu-
tion, used by Oskar Stalberg [17], is to utilize custom tiles
and constraint patterns which provide rulesets for irregular
grids. Sketch-2-Tilemap aims to make it easy for a user

Figure 3. Examples illustrating conflicts of orientation.

to customize outputs with unique tilemaps and input pat-
tern bitmaps. The approach used by Stalberg would handle
these irregularities but make it difficult for users to specify
new input patterns. Sketch-2-Tilemap implements WFC in
a way that handles these irregularities and attempts to min-
imize orientation conflicts through custom face orientation
of the quadrilateral mesh.

3.2. Orientation Conflicts

The implementation of Wave Function Collapse in
Sketch-2-Tilemap relies on a set of constraints that are ex-
tracted from an input bitmap on a regular grid. As such,
constraints are based on orientation. For simplicity, we
assign each tile a North direction. The tiles other direc-
tions East, South, and West, are assigned clockwise from its
North direction. Each tile type has a set of constraints for
North, East, South, and West extracted from the input con-
straint pattern. Because the constraint pattern is specified
on a regular grid, North is always designated as the upward
direction. However, because we are performing WFC on
an irregular grid, there may be conflicts of orientation. A
conflict of orientation occurs when the orientation of a grid
face does not match one of its neighbors. For example, a
face that sees it’s neighbor as the face to the north, where
the neighbor does not see the original face as to its south
would cause a conflict of orientation.

Example 1 of Fig. 4 shows how conflicts of orientation
can be unavoidable on an irregular grid. Notice how there is
no way to properly orient each face to avoid such conflicts.

However, there are instances where choosing the orien-
tation of a face can help minimize conflicts of orientation
and result in better WFC outputs. Example 2 of Fig. 4
shows an avoidable conflict of orientation caused by setting
each face’s North direction to the uppermost edge. Notice
how the highlighted tiles have a South orientation that does
not point to the face whose North orientation points to it.
In this case, the conflict is avoidable, as seen in figure 3.

Search-based optimization algorithms such as Markov-
Chain Monte-Carlo can be used to find an orientation of
faces that minimizes conflicts of orientation. Attempted

3

Figure 4. Breath-First orientation outputs k = 200.

search-based optimization methods, however, require slow
runtimes and would have to be re-run on each new input
sketch.

In Sketch-2-Tilemap, we perform k breadth-first orien-
tations starting from random faces and choosing the result
with the minimum number of conflicts of orientation. The
result in Example 3 of Fig. 4 can be acheived with k = 1.
For more complex meshes, the result which minimizes
conflicts of orientation will be found from starting faces
within the largest regular lattice-aligned patch of faces on
the mesh.

3.3. Extended Wave Function Collapse

Sketch-2-Tilemap uses a custom implementation of the
Wave Function Collapse algorithm proposed by Maxim Gu-
min [3]. This extended algorithm works for regular 2D
grids, warped 2D grids (similar to the results acheived by
Tobias Moller [10]), as well as irregular grids Fig. 7. The
algorithm is shown in Algorithm 1. As an input, the algo-
rithm takes G, an n × 4 array where each row represents a
face and each column represents the row index of the face’s
neighbor in a specified direction, and C, an m × 4m array
where each row is a tile index and each column is a binary
value representing if another tile can be adjacent to that tile
in a specified direction. The algorithm outputs S, an n×m
array where, if WFC is successful, each row has a single 1
value at a column whose index corresponds with a tile type.

G is generated from the irregular quad mesh built from
an input sketch using the approach described in section 3.1.
C is generated using the input pattern constraint texture. S
is used to keep track of which tiles can be placed at which
grid face, and ultimately outputs the single tile chosen by
WFC.

Algorithm 1: Extended Wave Function Collapse to
Generalize to Irregular Grids

Input: G, C
Output: S

1 Def Propagate(f, S, G, C):
2 q = [f]
3 while q do
4 foreach n ∈ Gq.pop() do
5 if

∑
n = 1 then

6 continue
7 snew=updateState(n, G, C)
8 if snew ̸= Sn then
9 q.append(n)

10 Sn = snew

11 return S

12 Def Main(G, C):
13 n = |G|
14 m = |C|
15 T = n*m
16 S = 1n,m
17 while T > 1 do
18 f = argmin(entropies(S))
19 Sf = collapse(Sf)
20 S = propagate(f, S, G, C)
21 T =

∏n
i=0

∑m
j=0 Sij

22 if T = 0 then
23 return 0

24 return S

When choosing a space for each iteration of the algo-
rithm, the Shannon Entropy is calculated for each available
space, and the space with the lowest Shannon Entropy is
chosen using the formula in Equation 1

E(F) = −
∑
t∈TF

p(t) log p(t) (1)

Where E(F) is the entropy of a face, t is a tile type, TF

is the set of remaining possible tiles for F , and p(t) is the
number of occurences of that tile type over the total number
of tiles in the input constraint pattern.

Divergences from the traditional WFC algorithms
include generalizable data structures as well as an
updateState() function robust to orientation conflicts.
For an irregular grid, a face’s possible states depend on its
neighbors constraints on it as well as its constraint on its
neighbors. If a face’s state does not match the constraint of
its neighbors, or if none of a neighbor’s possible states work
with the constraints of the state, that state is eliminated from
the row representing that face’s possible states in the state
array S.

4

Figure 5. Output of my WFC implementation on regular 2D grids.

Figure 6. Outputs of WFC using Blob Tilest on regular grids

This bidirectional checking ensures that the algorithm
produces legal output patterns, but limits the number of pos-
sible grid configurations. In scenarios with high ratios of
face orientation conflict, it may be impossible for WFC to
converge. Therefore, it is important to minimize orientation
conflicts for expressive outputs using the methods discussed
in Section 3.2.

This extended algorithm can produce traditional 2D
WFC results Fig. 5, Fig. 6, Fig. 8 as well as results on an
irregular grid Fig. 7.

3.4. Tile Deformation

A Blob tileset [21] is used with WFC to generate the re-
sults shown. This tileset includes all possible configurations
of tiles containing walls and a floor such that any vertical
face of the cube is a wall. In traditional WFC, tiles must
be copied and translated to their correct positions. With-

Figure 7. Output of WFC on a regular grid, a warped regular grid,
and an irregular grid.

Figure 8. Another example of WFC initialized with blob tileset
pattern on warped regular grid

out warping, this could be achieved through the memory-
efficient approach of mesh instancing. For WFC on irregu-
lar grids, however, the tiles must be deformed to match their
respective spaces. Sketch-2-Tilemap uses an 8-point lattice
deformation implemented with Houidini’s Lattice Geome-
try Node [8]. Lattices are oriented such that the North po-
sition of the face corresponds to the top edge of the input
tile.

Examples shown in this paper are created using the Wang
Blob Tileset [21] included in Houdini, as well as a custom
dungeon tileset built using assets from Pup-Up Productions
Voxel Castle Pack [12]. Both tilesets can be seen in Fig. 11.

3.5. Digital Asset

The implementation described in this paper was built us-
ing Python and Houdini [14]. As such, it can be packaged
using Houdini Digital Assets and loaded into a game engine
such as Unity [20]. With this method, a user can use the tool
as part of a game engine experience without knowledge of
Python or Houdini. Fig. 9 shows the UI that the user will
see when interacting with this tool.

Parameters exposed to the user include paths for an input
sketch and constraint pattern, the number of desired faces
n, the number of breadth-first orientation iterations k, and
additional parameters such as a seed for the WFC algorithm.

4. Experiments:
4.1. Quantitative

We present our method for reducing conflicts of orien-
tation in Section3.2. The hypothesis was that reducing the

5

Figure 9. The Houdini Digital Asset UI for this implementation.

Figure 10. The impacts of conflicts of orientation on tile variation

number of conflicts of orientation would result in a better
WFC output. In our case, shapes with high conflicts of ori-
entation would often converge fully or mostly to floor or
filled-in tiles, which have fewer constraints and can always
be placed next to one of the same type in any direction.

These maps were sub-optimal because they did not have
enough variation in tiles. To measure variation in tiles, we
use average difference from the mean defined as followed

S =
1

n

tlen∑
i=0

|ti −
1

t

tlen∑
j=0

tj | (2)

where S is the sameness value, n is the total number of faces
in the grid, and t is a vector containing the counts of each
tile type found in the WFC output.

Percentage of conflicts of orientation is found simply by

100 ∗ c

4n

where c is the number of conflicts of orientation found. This
is where a face’s orientation does not line up with a neigh-
bor’s. c is counted a maximum of 4 times per face as each
face has 4 neighbors.

We plot percentage of conflicts of orientation against our
sameness values for 4 input shapes each with 2 face counts,
producing varying topologies, as seen in Fig. 10. The input
grids used to gather this data can be seen in Fig. 13.

Figure 11. (Left) Wang Tile Set, (Right) Dungeon Tile Set

From Fig. 10, we see a clear correlation between con-
flicts of orientation and sameness of tiles output by the WFC
algorithm. Therefore, in order to have more varied out-
put, we should work to reduce conflicts of orientation. This
makes intuitive sense, as conflicts of orientation effectively
increase the number of constraints on the WFC output, mak-
ing it difficult for WFC to converge to diverse outputs. The
floor and filled in tiles are exceptions, as orientation does
not matter for these tiles when places next to one another.
Conflicts of orientation reduce the number of possible con-
figurations to only tiles whose constraints are not impacted
by orientation when placed next to each other.

To produce Fig. 10, we used our Breadth-First Orienta-
tion method with the k values 100 and 1, picking the ori-
entation with the edge who had the minimum z-value as its
centroid (the northmost-edge), and picking random orienta-
tions for each face. These consistently produced sameness
values ranked in the order listed.

Next, we tested our implementation of Breadth-First Ori-
entation with different k values to see the result. Fig. 12
shows the effect of varying k-values by plotting them
against the resulting percent conflicts of variation averaged
over 10 trials for different shapes with different n val-
ues. Interestingly, all trials plateau around k = 50. This
likely occurs because the best alignments occur when the
randomly-chosen starting face is in the largest lattice struc-
ture contained within the irregular grid. As the number of
faces increase, the sizes of the lattice structures increase as
well, so the probability of starting in one of these structures
remains roughly the same.

4.2. Qualitative

We compare our approach to Moller et. al [10] in
Fig. 14. Our approach results in an output grid shape more
closely matching the input sketch. Sketch-2-Tilemap pro-
duces faces which are less deformed, requiring less defor-
mation in the output tiles. Benefits of Moller et al.’s ap-
proach, however, include having no conflicts of orientation
due to the output being a warped regular grid. In contrast,
our output is on an irregular grid, so it is intractable to have
no conflicts of orientation. This can result in outputs that

6

Figure 12. The impacts of increasing k on Breadth-First Orienta-
tion

potentially perform better at matching the patterns
shown in the input constraint pattern.

Moller et. al’s approach to WFC differs from what is
shown in Fig. 14, where we run our WFC on their output
grid. Their approach incorporates traversability when plac-
ing tiles on the grid. This is a topic we leave as future work.

5. Conclusion
Sketch-2-Tilemap shows the potential of running WFC

on irregular input grids to generate tilemaps where artists
control the overall structure by specifying an input shape
and a binary constraint pattern. By reducing conflicts of ori-
entation through breadth-first orientation, the outputs can be
expressive like the outputs of normal WFC while being run
on an irregular grid produced by hand-drawn inputs.
Sketch-2-Tilemap also shows how an existing procedural
generation algorithm can be extended for greater user con-
trol and flexibility, and packaged in a way to make it easy
for users to interact with.
There are many possible future directions to take this im-
plementation which include synthesizing better outputs and
allowing for more user control.

5.1. Future Work

Future work lies in providing the designer more intuitive
control over the output. For an example of an output that
is difficult for the artist to control refer to the castle input
shapes of Fig. 13.

Artist control could come from allowing the user to con-
strain certain tiles prior to the WFC algorithm. For example,
the user could select the faces along desired corridors and
constrain them to wall tiles. Additionally, boundary faces
can be assigned to a wall, corner, or filled tile to ensure no
open edges of the map.

Additional areas of improvement for this approach in-
clude utilizing different quad meshing algorithms. The
method being used [5] is prone to errors and large chunks
of missing shapes. This can be noticed in multiple areas
of Fig. 13, such as the tips on the tree shape C and on the
bottom left circular shape on D.

Figure 14. A comparison of our WFC on growing grids [10] and
Interactive Field-Alligned Mesh grids [5]

Future work can also include a 3D WFC. The input
grid could be extruded in the z-dimension to create 3-
dimensional grid spaces resulting in 3D output maps with
varying elevation and structures. This extension would
require the consideration of a new 3D input constraint
method.

References
[1] Contour Approximation Method. https://docs.

opencv.org/3.4/d4/d73/tutorial_py_
contours_begin.html.

[2] Juncheng Cui. Procedural cave generation. URL:
https://ro.uow.edu.au/theses/3493/.

[3] Maxim Gumin. Wave Function Collapse Algorithm.
Version 1.0. Sept. 2016. URL: https://github.
com/mxgmn/WaveFunctionCollapse.

[4] Hex Map. https://en.wikipedia.org/
wiki/Hex_map. Dec. 2021.

[5] Wenzel Jakob et al. “Instant Field-Aligned Meshes”.
In: ACM Transactions on Graphics (Proceedings
of SIGGRAPH ASIA) 34.6 (Nov. 2015). DOI: 10.
1145/2816795.2818078.

[6] Lawrence Johnson, Georgios Yannakakis, and Julian
Togelius. “Cellular automata for real-time generation
of”. In: (Sept. 2010). DOI: 10.1145/1814256.
1814266.

[7] Marian Kleineberg. Infinite procedurally generated
city with the wave function collapse algorithm.
Jan. 2019. URL: https : / / marian42 . de /
article/wfc/.

[8] Lattice Geometry Node. URL: https : / / www .
sidefx.com/docs/houdini/nodes/sop/
lattice.html.

7

https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://ro.uow.edu.au/theses/3493/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://en.wikipedia.org/wiki/Hex_map
https://en.wikipedia.org/wiki/Hex_map
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/1814256.1814266
https://doi.org/10.1145/1814256.1814266
https://marian42.de/article/wfc/
https://marian42.de/article/wfc/
https://www.sidefx.com/docs/houdini/nodes/sop/lattice.html
https://www.sidefx.com/docs/houdini/nodes/sop/lattice.html
https://www.sidefx.com/docs/houdini/nodes/sop/lattice.html

Figure 13. Inputs used in experiments shown in [Fig 10] and [Fig 12]

[9] Jialin Liu et al. “Deep learning for procedural con-
tent generation”. In: Neural Computing and Applica-
tions 33.1 (Oct. 2020), pp. 19–37. ISSN: 1433-3058.
DOI: 10.1007/s00521-020-05383-8. URL:
http://dx.doi.org/10.1007/s00521-
020-05383-8.

[10] Tobias Møller and Jonas Billeskov. “Expanding
Wave Function Collapse with Growing Grids for Pro-
cedural Content Generation.” PhD thesis. May 2019.
DOI: 10.13140/RG.2.2.23494.01607.

[11] Amit Patel. Amit’s Thoughts on Grids. http :
/ / www - cs - students . stanford . edu /

˜amitp/game- programming/grids/. Jan.
2006.

[12] Pup Up Productions. Voxel Castle Pack Lite: 3D his-
toric. https://assetstore.unity.com/
packages/3d/environments/historic/
voxel-castle-pack-lite-164189. Mar.
2020.

[13] Rule tile: 2d tilemap extras: 1.6.0-preview.1. URL:
https://docs.unity3d.com/Packages/
com.unity.2d.tilemap.extras@1.6/
manual/RuleTile.html.

[14] SideFX. Houdini. https : / / www . sidefx .
com/.

[15] Ryan James Smith. WFC in houdini. Jan. 2022. URL:
https : / / twitter . com / overdrawxyz /
status/1484214381974020113.

[16] Oskar Stalberg. Bad North. URL: https://www.
badnorth.com/.

[17] Oskar Stalberg. Townscaper. URL: https : / /
oskarstalberg.com/Townscaper/.

[18] Adam Summerville et al. “Procedural Content Gen-
eration via Machine Learning (PCGML)”. In: IEEE
Transactions on Games 10.3 (2018), pp. 257–270.
DOI: 10.1109/TG.2018.2846639.

[19] Satoshi Suzuki and KeiichiA be. “Topological struc-
tural analysis of digitized binary images by border
following”. In: Computer Vision, Graphics, and Im-
age Processing 30.1 (1985), pp. 32–46. ISSN: 0734-
189X. DOI: https://doi.org/10.1016/
0734 - 189X(85) 90016 - 7. URL: https :
/ / www . sciencedirect . com / science /
article/pii/0734189X85900167.

[20] Unity Technologies. Unity. Version 2019.4 LTS.
URL: https://unity.com/.

[21] Wang tiles. URL: http://www.cr31.co.uk/
stagecast/wang/blob.html.

8

https://doi.org/10.1007/s00521-020-05383-8
http://dx.doi.org/10.1007/s00521-020-05383-8
http://dx.doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.13140/RG.2.2.23494.01607
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
https://assetstore.unity.com/packages/3d/environments/historic/voxel-castle-pack-lite-164189
https://assetstore.unity.com/packages/3d/environments/historic/voxel-castle-pack-lite-164189
https://assetstore.unity.com/packages/3d/environments/historic/voxel-castle-pack-lite-164189
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/RuleTile.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/RuleTile.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/RuleTile.html
https://www.sidefx.com/
https://www.sidefx.com/
https://twitter.com/overdrawxyz/status/1484214381974020113
https://twitter.com/overdrawxyz/status/1484214381974020113
https://www.badnorth.com/
https://www.badnorth.com/
https://oskarstalberg.com/Townscaper/
https://oskarstalberg.com/Townscaper/
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://www.sciencedirect.com/science/article/pii/0734189X85900167
https://www.sciencedirect.com/science/article/pii/0734189X85900167
https://www.sciencedirect.com/science/article/pii/0734189X85900167
https://unity.com/
http://www.cr31.co.uk/stagecast/wang/blob.html
http://www.cr31.co.uk/stagecast/wang/blob.html

	. Introduction
	. Related Work:
	. Tilemaps
	. Procedural Content Generation
	. Wave Function Collapse

	. Methods:
	. Image to Irregular Grid
	. Orientation Conflicts
	. Extended Wave Function Collapse
	. Tile Deformation
	. Digital Asset

	. Experiments:
	. Quantitative
	. Qualitative

	. Conclusion
	. Future Work

